Cosmic Web and Environmental Dependence of Screening: Vainshtein vs. Chameleon
نویسندگان
چکیده
Theories which modify general relativity to explain the accelerated expansion of the Universe often use screening mechanisms to satisfy constraints on Solar System scales. We investigate the effects of the cosmic web and the local environmental density of dark matter halos on the screening properties of the Vainshtein and chameleon screening mechanisms. We compare the cosmic web morphology of dark matter particles, mass functions of dark matter halos, mass and radial dependence of screening, velocity dispersions and peculiar velocities, and environmental dependence of screening mechanisms in f(R) and nDGP models. Using the ORIGAMI cosmic web identification routine we find that the Vainshtein mechanism depends on the cosmic web morphology of dark matter particles, since these are defined according to the dimensionality of their collapse, while the chameleon mechanism shows no morphology dependence. The chameleon screening of halos and their velocity dispersions depend on halo mass, and small halos and subhalos can be environmentally screened in the chameleon mechanism. On the other hand, the screening of halos in the Vainshtein mechanism does not depend on mass nor environment, and their velocity dispersions are suppressed. The peculiar velocities of halos in the Vainshtein mechanism are enhanced because screened objects can still feel the fifth force generated by external fields, while peculiar velocities of chameleon halos are suppressed when the halo centers are screened.
منابع مشابه
Shape dependence of Vainshtein screening
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Scalar field theories that possess a Vainshtein mechanism are able to dynamically suppress the associated fifth for...
متن کاملUnscreening Modified Gravity in the Matter Power Spectrum.
Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of th...
متن کاملEquivalence Principle Violation in Weakly Vainshtein-Screened Systems
Massive gravity, galileon and braneworld models that modify gravity to explain cosmic acceleration utilize the nonlinear field interactions of the Vainshtein mechanism to screen fifth forces in high density regimes. These source-dependent interactions cause apparent equivalence principle violations. In the weakly-screened regime violations can be especially prominent since the fifth forces are ...
متن کاملNo-go theorems for generalized chameleon field theories.
The chameleon, or generalizations thereof, is a light scalar that couples to matter with gravitational strength, but whose manifestation depends on the ambient matter density. A key feature is that the screening mechanism suppressing its effects in high-density environments is determined by the local scalar field value. Under very general conditions, we prove two theorems limiting its cosmologi...
متن کاملA study on the lateral distribution of Cherenkov light in extensive air showers
The dependence of the lateral distribution of Cherenkov light in simulated extensive air showers to the energy and the mass of the primary cosmic rays has been studied. It has been shown that a previous claim about mass independent proportionality of shower energy to the total Cherenkov photon number is not valid in energies below EEAS ~ 1014 eV. We have found that the core distance of the so c...
متن کامل